
§· 数字逻辑概论
• 数字信号描述方法
电信号{模拟电信号: 连续
电信号《模拟电信号》连续 数字电信号:离散
数字信号四插述方法
(1) 0,1数码《老成数量时私二进制数
(1) O, 1 数码 < 老示数量时私二进制数 表示事物状态时私二值逻辑
(2)逻辑电平《高电平:电压 VH(min)~+VoD 1
(3) 逻辑电平 { 高电平 : 电压 VHCmin, ~ +VDD 1 (低电平 : 电压 0 ~ VCcmax) 0
(3) 数等波形
一般采用二值数字逻辑
吴际脉冲波形及主要参数
0 幅值
②上升时间 tr (hs) 10% km - 9% km 研经历的时间
⑤下降时间 tf (ns)
田周期十 频率十二十
四脉冲宽度机 上升5%加一下降5%加
① 占层比 Q = 禁×100%
2 裁制
(1) 数制·计数规则(构成方法+进位规则)
十进制:采用0~9数码,逢心进门
推 55.316 = 5×10' + 5×10' + 3×10') + 1×10'' + 6×10''
132782670 0070 12-4 12-7
₹数位权
R进制·以R为基数的计数体制

②小数号分
加拉拉花
e.g. $(0.675)_{10} = 0.5 + 0.175 = 2^{-1} + 2^{-3} = (0.101)_{1}$
重复乘以2取整法 (0.3175) _D = (0.0101) _B
e.g. 10.3175×2=0.675 取 0
0.625 × 2 = 1.25
0.75 × 2 = 0.5
0.5×2 = 1.0
e.g. 爱礼转换误差小于1名
$P 2^{-m} \le 1\% \Rightarrow m \ge \frac{2}{4^2} = 6.64$
即转换到小数点后第7位
(3) 其他不同数制之间的车转换
二 — 十六:将4位二进制看作一个整体
的二进制的水数点为基准,
将小数点左边的整数从右到左每4个分为一组;
··· 右 ··· 从左到右 ···
沿海组数以1个十六位数代替
e.g. = 1101 1001 1011 0011 .0100
十六 D 9 B 3 . 4
ナ → ナ六
方法0: 十→ = → 十六
方法D:仿照十→二"的方法
$e.g.$ $16 650$ 2 8 $(650)_{0} = (28A)_{H}$ $(650)_{0} = (28A)_{H}$

3 二进制数的算术运算
(1) 二进制数的真术运算
①加法运算和十进制类的 "逢二进一"
②城法运车
3 来流运算
$0 \times 0 = 0$ $0 \times 1 = 0$ $1 \times 0 = 0$ $1 \times 1 = 1$
四 陈法运车
0+1=0 1+1=1
四有符号数的表示
计算机无法识别(+)/(-) ⇒将+/-也用0/1老示
机器数/机器码:将数以符号和数值部分均用0.1进行
编码所表示出来的二进制数
真值、用+1-表示出来以十进制数或二进制数。
机谷数 无符号数 所有二进制证均用来无不数值
有行多数:数以行号和编码的用二进制编码表示
正0 (原码:最高位符号,其宋相同
发1 反码·最高位符号, 正数与原码相同,
页数接位取反
神码:"模'指一个系统心量程
eg. 时钟模为12, 4位=进制数模为16
科码证科码》原码 8位二进制数模为256
城东某数可用加上其科码代替
最高位符号,正数与原码相同,
负数按位取反后,在最低位+1

(>) 补码如极远真

[X] + [Y] = [X+Y] A

[X]N - [Y]N = [X]N + [-Y]N = [X-Y]N

强意.:

① 考与远真的操作均为补码

②符号位和数值位按同样以规则考加运算,结果的符号位由运算得出.

③补码总是对确定的模而言,如果远算结果超过3模,则丢掉模(即进位)才的得到证确结果

"溢出" 》位扩展

△ n位有行号而二进制数m原码、反码和补码 m数值范围

原码: -(2ⁿ⁻¹-1) ~ +(2ⁿ⁻¹-1)

反码: -(2ⁿ⁻¹-1)~ +(2ⁿ⁻¹-1)

孙码: -2ⁿ⁻¹ ~ +(2ⁿ⁻¹-1)

4 =进制代码

码制:编制代码所要遵循品规则

二进制代码。将若干个二进制数码(0和1)按一号规律排列包来表示某种特色证信息, 称为二进制代码编码 用以位二剂数表示20个不同证信息, 给每个信息规号一个具体证二进制数编码, 这个过程为编码

(Binary - Coded - Decimal)

用二进剂编码表示的一进制数,高程BCO码

23~10~24 与需要4位三进制数

16种组合 》这样10种表示 3 每种方案表示-种BCD码

e.g. 8421BCD码 (最端用)

十进剂数 ⇔ BCD码

(97)0 () (1001 0111) BCD

注意:"十进制与二进制转换"与"用BCD码表示十进制数"

概念不同!

无权码

余3码

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

码

余3循

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

0000		几种	常用的B	CD代
0001	The Control Service	"权"	3.0 (S.0.10) UA-	
0010	十进制	8421码	2421 码	5421 型
0011	数码	~~~	and the second of the	ST APPLICATION AND
0100	0	0000	0000	0000
0101	1	0001	0001	0001
0110	-	0010	0010	0010
0111	2	0010		121 23
1000	3	0011	0011	0011
1001	4	0100	0100	0100
1010	5	0101	1011	1000
1011	6	0110	1100	1001
1100	7	0111	1101	1010
1101	-	200	1000000	55,506;
1110	8	1000	1110	1011
1111	9	1001	1111	1100

(2) 格雷码

无权码、循环码、反射码

特点。因为相邻代码(包括首和尾)之间仅有一位取值不同

回最高位的0和1只改变一次;若以最高位的0和1交界为轴,其他位的代码是上下对称的。

用途、主要用于角度编码 (不附直接进行集标运算) 二进制码转换为格雷码

- ①格雷码的最高位与二进制码的最高位相同
- ②从左到右,逐一将:进制码相邻:位相加(笔玄进位),

作为格雷码的下一位。
e.g. =进制码 101101
格雷码 1 1 0 1 1
(3) ASCII 码和奇偶校验码
ASCII码:七位二进制编码 共128个
奇偶核验码:有效信息以位)+检验位(1位)
各检验码:信息位和检验位中*1°个数之和为夸数 偶检验码:信息位和检验位中*1°个数之和为偶数
偶检验码:信息位和检验位中"广大数之和为偶数
发送端接收端
由编码器根据信息位通过检测器检查
编码产生奇偶检验位 含小个数的奇偶
注意. D 只有检销的力. 无创错的力
⑤ 只够发现单个错误,不够发现双错

多2 逻辑代数	
1 逻辑代数简介	
George Boole 逻辑代数/布尔什	论数
按一号逻辑规律进行	这真心代数
Claude E. Shannon 布尔代数集分析继电器	后的有效方式
"二值逻辑"	
在数字电路中《杂件→输入信号	
条件和结果的状态用逻辑"和"的"未	をぶ
2 逻辑运算和集成逻辑门简介	
(1) 基本逻辑运算	
5 与门电路 & & L	A
$L = A \cdot B$	
或门电路 8二三二人	A
L = A + B	
非 非门电路 A————————————————————————————————————	A —
$L = \overline{A}$	表示反相
(2) 复合逻辑运算	
与非逻辑运算 L= A·B	8
或非逻辑运算 L = A + B	A
异或逻辑运真	
A.B相同时,输出L=0	8 = 1 - L
A. B不同时, 输出 L=1	A
$L = A \oplus B = \overline{A}B + A\overline{B}$	в <i>//</i>

同或逻辑运	F -	
A、B相同的	寸. 输出二	A
A. B不同时	·输出L=0	
L = AOB	$= AB + \bar{A}\bar{B}$	
(3) 三杰门		
有三种可触	in 4/14: 0.1.	Z EN
又指输出	ら高阻忘	A
又意味着新	前入与输出之间是	打开 in
真值表	· · · · · · · · · · · · · · · · · · ·	4
使够EN	输入A	等所出 L
	0	0
l	K)
0	X	Z
山集成电路质	11	
•		
集成电路	单极型	
集成电路	限合型	
传输证迟	: 输出滞后于3	揃入
•	高→低 延	Z tom
	低力为建	
		日了的 tpd = = 1 tpHL + tpLM
3 逻辑代数的事	基本是理和规则	<u> </u>
(1) 逻辑代数基	本学律	
	A.0 = 0	A+0=A
•	λ. Λ	A . I .

② 对反变量的外的非号保持不变 e.g. $L = \vec{A} \cdot \vec{B} + C \cdot D$ $\bar{L} = (A+B) \cdot (\bar{C}+\bar{D})$ 对偶规则 "或"与"互换, 0.1互换 得到1四对偶式 L' eg. L = (A+B)(A+C) $L' = A \cdot \overline{B} + A \cdot C$ 4 逻辑函数及其表示方法 输入(条件) →输出(结果) 逻辑函数(Logic Futtion) example. 川逻辑真值表 开关A.B 上(1) 下(0) 灭的亮的 火灯 L A B 0 ĀB 0 0 0 AB 四跨辑函数表达式 L = AB + AB 步骤: ①把每个输出为1的一组输入变量组合多成乘积场 ② 乘积顶中,逻辑值,用原至量,0用反差量表示

③ 将乘积吸进行逻辑或

注意。 ①输入安量问是'与' 输出状态的组合是"或 ②对A.B.L,取值1用原至量、0用及是表示 的逻辑图 (4) 7度开发 (5)卡诺图 (b) 硬件描述语言 (HDL) 5 逻辑函数的代数化高法 (1) 逻辑函数表达式证形式 与一或表达式 积记和 成一与表达式 和之积 (2) 逻辑函数的代数化高法 如何判断"与一或"最高? 0包含"与"极的个数量少 回每个"与"级中的变量数最少 化局的国家方法 @ 图解法(卡诺图法) D 公式法(代数法) 并该法 $A + \overline{A} = 1$ (元后介绍) 吸收证 A + AB = A消玄弦 A + AB = A + B 配吸弦 $A = A(B + \bar{B})$

的逻辑函数表达式的多换

一种集成电路芯片内部通常只有一种类型的逻辑门。

为了城少门的种类, 适应芯片的情况, 需要

变换逻辑表达式

e.g. 与非

$$L = A(B+c) = AB + AC$$

0 取非2次

$$= \overline{AB + AC}$$

回摩根管理

$$= \overline{AB \cdot AC}$$

或非

$$L = \overline{A}\overline{B}C + A\overline{B}\overline{C}$$

 $= \overline{\overline{A} \overline{B} C} + \overline{\overline{A} \overline{B} \overline{C}}$

$$= \overline{A + B + \overline{c}} + \overline{A + B + C}$$

$$= \overline{\frac{\overline{A} + B + \overline{C}}{\overline{A} + B + C}}$$

Note O所有m逻辑电路可以只用与非门实现,

也可以只用或非门实现.

$$\begin{array}{c|c} A & \longrightarrow & A & \longrightarrow$$

6 逻辑函数如卡诺图化局法

逻辑函数表达式 {与一或表达式 → 最小项表达式 □ 表表形式 | 或一与表达式 → 最大项表达式

(1) 逻辑函数的最小吸表达式

最小级 在的变量逻辑函数中,若一个乘积级包含 3全部的几个变量,每个变量都以它的原 变量或非变量的形式在乘积级中出现1次

化个变量的最小没有之"个最小没的确当

E.g. ABC =进制 000 → +进制 0 100 m.
ABC =进制 001 → +进制 1 100 m.

最小吸加性质

- DY最小级,输入妥量只有一组取值使其值为1,其它各组取值均使它为0.
- @ Y取值,任意两个最小级乘积为0
- ③ 1-组取值,全体最小级之和为1

最小级表达式/标准与一或式

每个'与'顶都是最小顶

e.g. L(A.B.C) = AB+AC

= AB(C+c) + A(B+B)C

= ABC + ABC + ABC + ABC

= m7 + m6 + m3 + m,

= Zm(7, 6, 3, 1)

逻辑函数支持为最小项表达式				
① 多换为乘积吸之和				
② 用 A + Ā =1 西21及				
汉逻辑函数的最大吸表达式 与最小及	超	5 7)	类似)
最大级每一个或没有它含全部的人				
最大吸血偏多 Mi				
对于一个最大项,输入安量只有一位	a. =	; z;‡	*湖	* 5
使其取值为口、与该组二进制数对各				
是该最大级的下标编号	5 * `	- (1 82.8
$e.g. \overline{A} + \overline{B} + C$				
A=1 B=1 C=0 \longrightarrow $\bar{A}+\bar{B}$			= 0)
110 → 6 → N 最大吸血性质	16			
	<u>サ</u> ル	t 1	/ _	
D Y 最大级, 只有一组变量的取值使。	足1	且ブ	90	
② 4 二最大项之和为1				
Ø Y -组变量取值,全体最大吸气积为	10			
最大项表达式/标作或一与式				
A最小级与最大级的关系 Mi = mi				
e.g. 某电路真值表加下, 试写出最小项和自	2ヶ	KV.	老过	述
①最小没老过式:将上口各最小好助口		В		L
$L(A,B,c) = m_3 + m_5 + m_6$		0		0 M ₃
		0		0 1/1/2
= \(\mathbb{Z}\mathbb{m}(3, 5, 6)\)		1		$1 \rightarrow m_3$
= ABC + ABC + ABC		0		0 /My
回最大的老达式,将上一个最大吸相乘				$1 \rightarrow m_5$
	1	1	0	$1 \rightarrow m_6$
$L(A,B,C) = M_1 \cdot M_1 \cdot M_2 \cdot M_4 \cdot M_7$	1	1	1	0 147

= TM(0.1.2,4,7) = (A+B+C)(A+B+C)(A+B+C) (A+B+c)(A+B+C) (3) 朱海岸而引生 口相邻最小场 只有一个多量至为反变量 ②填气规则、逻辑相邻和几何位置相邻一致 ⑤ "折叠展开" 17 - 变量卡诺图 0 前两妻星卡诺图 0 2 (11) 三夏星卡诺图 2 iv) 四度量卡诺图 2 5 13 15 14 12 9 1) 10 11 14) 逻辑函数的卡诺图表示法 方法①逻辑函数 → 最小吸表达式 ②填写卡稀图 图 上中到出的最小项, 填 1 L中不存在的最小级.旗口 40逻辑函数的卡诺图化简弦 化的依据、相邻有一项引相反项 化简为骤 ①逻辑函数 — 最小顶之和

- ②填写卡诺图
- ⑤画包围圈,每个包围圈含2个方格
- (P) 34年12月图的乘积级。 将所有包围图的乘积级相加。

画包围圈的一般规则

- D 国内方格数2°个, n=0,1,2,...
- 回相邻方格包括上下底、左右边、四个角
- ③一个方格可被重复包围
- 四 圆内方格尽可够多,包围圈数目尽可够少

(5)具有无关吸加逻辑函数化局

无关场

无关项的处理 化简时可以取口或1.使函数 尽可够简化用"d","x"表示

单输出逻辑函数的化局

方法 ①列真值表

回画卡诺图

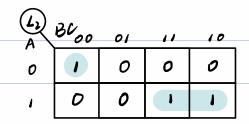
西面包围圈

e.g. L(A, B, C, D) = Zm(5, 6, 7, 8,9)+Zd(10, 11,12,13,14,5)

AB	Doo	01	11	10
00	0	0	0	0
01	0			1
-11	X	X	X	X
10	1	1	X	X

1,2,4.8

L(A,B,C,D) = A + BC + BD


多输出逻辑函数的化简

tips: 找其同部分,使整体最同(成本降低)

e.g. L, (A, B, C) = \(\gamma m(0, 4, 5, 6, 7) \)

Lz (A. B. C) = Z m(0.6.7)

(L_1)	21			
A	BC00	01	11	10
0	1	0	0	0
1	1	1	1	1

考虑共享乘积级 ABC L, (A,B,C) = A+ABC L, (A,B,C) = AB+ABC 不考虑共享乘积级 ABC L, (A,B,C) = A+BC L, (A,B,C) = AB+ABC

7 逻辑门的精代符号

桁-作行号:

$$A \longrightarrow L$$
 $A \longrightarrow L$

如何将标准符号多为替代符号

①把标准符号的输出和每一个输入反相

回运算符号"与"→ "或"

替代科号

$$A \longrightarrow A \longrightarrow A \longrightarrow A \longrightarrow A$$

注意。①导致逻辑行号可以推广到具有更多输入诸岛门电路

②标准得号四输入稿无小圆圈,	
所有替代行号四输入诸都有小圆圈。	
③每一种门的标准得多和替代府号都代表相同	
而实际电路。	
有效逻辑电平	
输入或输出线上无外圆圈 → 高电平有效	
输入或输出线上有小圆圈 —— 低电平有效	